microsystems

Using Modula-2
on the Sun Workstation®

Part Number: 800-1514-10
Revision: A of 20 October 1986
For: Sun Unbundled Software Release

Contents

Chapter 1 Introduction

1.1. Overview

1.2. System Components
1.3. Getting Started

1.4. Development Tools

1.5. Related Documentation

Chapter 2 Compiling Modula-2 Programs: m2c and m21 ...

2.1. The m2c Compiler

The m2c Command

Example Compile

Syntax of m2c¢

Floating-Point Option Environment Variable ...

m2c and Related Files

2.2. The m21 Linker

Syntax of m21
m21 Arguments

m2 1 and Related Files

Diagnostics

Chapter 3 The Modula-2 Language on the Sun Works
3.1. Type Coercions

3.2. Language Extensions

3.3. The Module SYSTEM

—iii —

~N A AW W

~1

11
11
11
12
12
15
16
17
17
17
18

Contents — Continued

Constants Exported by SYSTEM 22
Types Exported by SYSTEM 23
Function Procedures Exported by SYSTEM . 23

3.4, Runtime (e e ssaeee 5o cesese i 25
3.5. Implementation Restrictions . 26
3.6. Data Representation 27
3.7. Parameter Passing 29
3.8. Module Initialization . 30
Chapter 4 Input and Output Modules . <.
Fatal Versus Non-Fatal Errors ... e 34

B I B st sarsasmsssassssensson s 35
Procedural File Conditions .

4.1, Filesg ik 36
D e O T et e s sser s p s PSSRSEAREESS 38
43. FilePositions 38
Al BANAEY i s faassas s 39
A5, TEEL oo srvosmsssssnes st isssssssss s s ssssss s s s st s s 39
4:6. NUMDETLLQ ..t iR 39
A8 StafdarEdT0 sy e w39
4.8, SIMPLETO ..o sssos s ssssssssssssmssesssssssessesseses e st eeesss s sss e 39
4.9. RealIO ... S .39
410 TOngReATTO cur s s e S s s 39
2 B L ¢3S ST 39
412, TeXMINAL ..o b s s e 42
Chapter 5 Memory Management Using Module Storage ... 49
)i SR OTETE i b i i isssisss e e e e AR e bk iasiis s 49

Chapter 6 String Manipulation and Conversion in Modula-2 ... 55

6.1 String 55
6., COnTE T R e vss oo e oo 55
6.3, Convert Rea] I o etss e roecoessesesesssssassneser ssaanssn 56

—

Contents — Continued

6.4.

Chapter 7 Floating - Point Mathematics in Modula-2 ...

Chapter 8 Accessing the Environment of a Modula-2 Program

8.1.
8.2.
8.3.

Chapter 9 Using the UNIX Library in Modula-2

9.1.
9.2.
9.3.
94.
0.5.

Chapter 10 Building and Maintaining Modula-2 Programs
10.1. Managing Modula-2 Program Builds with make

10.2. Maintaining Modula-2 Programs with sccs

Chapter 11 Debugging with dbx and dbxtool
11.1.
11.2. Expression Syntax
11.3.
11.4. Sample Debugging Session with dbx
11.5.
11.6. Known problems with dbx and dbxtool

Chapter 12 Performance Monitoring of Modula-2 Programs .

ConvertLongReal

Clock

System

UnixParam

UnixTypes

UnixDirectory

UnixFiles

UnixIoctl

UnixStdio

Using make

Macros and Rules

Using SCCS

Editing Files Under SCCS Control

Identifiers, Scopes, and Qualification

Constructs Not Accepted by dbx and dbxtool

Using adb

56

39

63
63
63

67
67
68
68
68
68

71
71
72
73
75
75
76

81
81
82
83
83
85
86

89

Contents — Continued

Chapter 13 Using Modula-2 with Other Languages

13.1,

13.2.

Appendix A Modula-2 Definition Module Sources

Al
A2,
A3,
Ad.
A,
A6,
A
A8.
AS.

A.10.
Al
A2,
A3,
A.14.
A.S.
A.16.
A7,

The Modula-2 to C Interface

The CCALL Calling Mechanism

The Special Definition Module Mechanism

Using VAR Parameters

Parameter Correspondence for Value Parameters

Linking Requirements for Calls to C Routines

Calling Modula-2 Procedures from Other Languages

External Names of Modula-2 Imported Identifiers

Initialization of the Modula-2 Environment

Argument List Layout

Value Parameters

Procedures and Functions as Parameters and Procedure Variables

Linking requirements

Binary .def Definition Module

Clock.def Definition Module

Convert .def Definition Module

ConvertLongReal.def Definition Module

ConvertReal .def Definition Module

Directory.def Definition Module

FilePositions.def Definition Module

Files.def Definition Module

InOut .def Definition Module

LongMathLib.def Definition Module

LongRealIO.def Definition Module

MathLib.def Definition Module

NumberIO.def Definition Module _
RealIO.def Definition Module

SimpleIO.def Definition Module

StandardIO.def Definition Module

Storage .def Definition Module

— -

95
95
95
96
98
98
98
98
98
99
99

100

100
101

105
106
108
110
111
111
112
113
114
117
119
119
120
121
122
123
124
126

Contents — Continued

A.18. string.def Definition Module 127
A.19. system.def Definition Module 129
A20. Terminal.def Definition Module 130
A21. Text .def Definition Module 132
A22, UnixDirectory.def Definition Module 134
A23. UnixFiles.def Definition Module 137
A24. UnixIoctl.def Definition Module 140
A.25. UnixParam.def Definition Module 145
A26. UnixStdio.def Definition Module 146
A27. UnixTypes.def Definition Module 150
Appendix B Modula-2 Compiler and Linker ManPages .. 155
Index 163

- vii—

3.1. Type Coercions

3.2. Language Extensions

The Modula-2 Language on the Sun
Workstation

This chapter describes the implementation of Modula-2 on the Sun workstation,
comparing it to the language as defined in Programming in Modula-2.2 In addi-
tion, it provides information that may be helpful for interfacing Modula-2 rou-
tines with routines written in other languages.

The information in this chapter is implementation-dependent. To write programs
that are as portable as possible, encapsulate this information in as few of your
modules as possible, and carefully document these modules to assist in later pro-
gram maintenance.

In Modula-2, you can use a type identifier as if it is a function to force the com-
piler to interpret an expression of one type according to the rules of a different
given type. For example, if the expression (I + J) normally has the type
INTEGER, you could use the construct CARDINAL (I + J) instead.

Such constructs are coercions; they defeat the standard type-checking rules of the
language. No conversion of value takes place. Any use of a coercion requires
that the original type and the new type have the same size in storage. Most
importantly, coercions are implementation-dependent, and may not be portable to
other Modula-2 environments.

Where at all possible, use conversion functions, such as ORD, CHR, FLOAT,
VAL, and TRUNC instead. These conversion functions are portable, since the
compiler translates between the two types, changing the object size if necessary.

Here are some features added to this implementation of Modula-2:

Subrange Types
You may precede subrange types by an optional base type identifier, as in
SHORTINT [10..20], in which case the subrange type inherits the size
and base type of the identifier.

Built-in “‘pervasive’’ types
This Modula-2 implementation includes SHORTINT (-32768..32767),
SHORTCARD (0..65535), and LONGREAL (64-bit IEEE double). This
implementation also includes LONGCARD and LONGINT, which are

2 Niklaus Wirth, Springer-Verlag, 3rd edition, 1985.

Ssun 21 A of 20 October 1986
microsystems

22 Using Modula-2 on the Sun Workstation

3.3. The Module SYSTEM

Note: Don't confuse module sYs-
TEM with System, described in the
chapter on accessing a Modula-2
program’s environment

(Chapter 8).

Table 3-1
Constants Exported by
SYSTEM

J{?@

synonymous with CARDINAL and INTEGER respectively.

Underscores in identifiers
To make it more convenient to use Modula-2 in conjunction with other
languages, the underscore character (__) may appear in identifiers anywhere
a letter would be permitted. Note that CCALL and DEFINITION FOR C
MODULE automatically add the leading underscore used when referring to an
identifier defined in C.

Augmented definition module syntax
The syntax of a definition module has been augmented to allow a special
definition module to serve as a ‘‘cover’’ for procedures and variables imple-
mented in other languages.

The SIZE Function
In accordance with the third edition of Wirth’s book, SIZE is now a stan-
dard identifier rather than an identifier in SYSTEM. The SIZE function
accepts either a variable name or a type identifier as its argument. It does
not allow tag-field parameters.

For more information on using the special definition modules, refer to the chapter
on using Modula-2 with other languages (Chapter 13).

The module SYSTEM is a special module that the compiler recognizes automati-
cally. It exports a set of implementation- and system-dependent constants, types,
and function procedures, which are needed for systems programming. Modules
importing from SYSTEM are very system-dependent; to make them portable to
other systems, you may have to alter them.

Identifiers Exported by SYSTEM

Constants Types Procedures
BITSFROMLEFT ADDRESS ADR
BITSPERWORD BYTE CCALL
BYTESFROMLEFT WORD TSIZE
BYTESPERWORD) NEWPROCESS
TRANSFER

The constants exported by SYSTEM are:

BYTESPERWORD
Number of bytes in a Modula-2 WORD, with value 4 on a Sun.

BITSPERWORD
Number of bits in a Modula-2 WORD, with value 32 on a Sun.

BYTESFROMLEFT
Order of bytes within a word, with value TRUE on a Sun.

sun A of 20 October 1986
microsystems

nmh

(]

Chapter 3 — The Modula-2 Language on the Sun Workstation 23

. BITSFROMLEFT
Order of bits within a byte or word, with value FALSE on a Sun.

Types Exported by SYSTEM ADDRESS

Byte address of an addressable location. The type ADDRESS is compatible
with all pointer types and (subranges of) the type CARDINAL. Itis defined
as POINTER TO WORD. All integer arithmetic operators apply to this

type.

BYTE
Representation of a one-byte storage unit. The only operations applicable to
variables of type BYTE are assignment and equality testing. Any type with
a one-byte representation may substitute for the formal parameters of type
BYTE. You may supply dynamic array parameters of type ARRAY OF
BYTE with elements of any type.

WORD
Representation of a four-byte storage unit (one word). The only operations
applicable to variables of type WORD are assignment and equality testing.
Any type with a four-byte representation may substitute for the formal
parameters of type WORD. For value parameters, you may also substitute
types with representations of less than four bytes. You may supply dynamic
array parameters of type ARRAY OF WORD with elements of any type
. represented in at least four bytes. If the size of the supplied parameter is not
a multiple of four bytes, Modula-2 ignores the last few bytes.

Function Procedures SYSTEM exports these function procedures:

Exported by SYSTEM ADR(var) : ADDRESS

Storage address of the given variable.

CCALL('c-routine’, parl, par2, ...) : INTEGER
This procedure provides an interface to an arbitrary C procedure.

For more information on CCALL, see the chapter on using Modula-2 with
other languages (Chapter 13).

Note: The identifier SIZE, which .

was in module SYSTEM in the .

Sccnict sdition of Wirth's book. 1 TSIZE (type, taglCon.'?.t, tagzponst, e) CARDINAL.

riow a standard identifier rather than Number of words occupied by a variable of the given type. If the typeis a

part of module SYSTEM. record ending in a variant, you may provide the tag constants of the
FieldList3 in their proper order. If you do not specify-all of the tag con-

stants, Modula-2 assumes the remaining variant of maximum size.

NEWPROCESS (procedure , workspaceaddr, workspacesize,
coroutinevariable) This procedure initializes a coroutine variable,
preparing that coroutine fora TRANSFER operation. Coroutine variables
are of type ADDRESS. They are implemented as pointers to a hidden

. 3 See the Modula-2 syntax in Wirth’s Programming in Modula-2, Springer-Verlag, 3rd edition. 1985.

@?f sun A of 20 October 1986

microsystems

24 Using Modula-2 on the Sun Workstation

structure.

NEWPROCESS takes as its first parameter the name of a parameterless pro-
cedure at the outermost level which executes when the coroutine begins.
Under ordinary circumstances, this procedure should be cyclic, and should

never return. If it does, Modula-2 emits the message -- return from
coroutine procedure, followed by a core dump, and the entire pro-
gram Stops.

NEWPROCESS takes as its second parameter the address of an area the new
coroutine will use as its workspace. The third parameter is the size of this
workspace, in bytes (the same units returned by SIZE and TSIZE). This
workspace must be at least 100 bytes in size, and the coroutine may need
considerably more space, especially if it calls to many levels or allocates
many local variables on the stack (which is inside the workspace). You may
have to experiment to determine how much workspace the coroutine actually
needs. In the interest of efficient operation, Modula-2 checks for stack
overflow only when creating the new coroutine, and not after it begins to
run.

The fourth parameter is a variable of type ADDRESS, which returns the
identity of the newly-created coroutine for later calls to TRANSFER.
Change any programs that use the type PROCESS to use ADDRESS
instead, for compatibility with the current definition of the language.

TRANSFER (fromCoroutine, toCoroutine)
This procedure alters the current flow-of-control by suspending the current
coroutine and restarting the execution of another.

Both parameters are VAR parameters, S0 you must pass explicit variables,
not expressions. The first parameter receives the saved state of the currently
executing coroutine, and the coroutine specified by the second parameter
becomes the new current coroutine. No ill effects occur if the same variable
is passed to both parameters. In other words, TRANSFER (XXX, XXX)
means, ‘‘save the current context in variable XXX, and restart execution of
the suspended coroutine previously held in the variable XXX.”’

dbx cannot ‘‘single-step’’ through calls to TRANSFER. Breakpoints may
be set after each TRANSFER instruction in order to trace execution flow.

While TRANSFER saves all ordinary state information of the currently exe-
cuting coroutine, it does not save the state of the floating-point hardware.
Because of this, you should avoid using coroutine transfers inside of func-
tion procedures (ordinary procedures do no harm), and you must exercise
caution when mixing Modula-2 programs with C procedures which declare
register floating point variables.

@ Ssun A of 20 October 1986

microsystems

T

Chapter 3 — The Modula-2 Language on the Sun Workstation 25

3.4. Runtime Checks

Here is an elementary example using coroutines :

This program will print:

By default, the compiler generates code to check that array indices, case indices,
and values in assignments are within the correct ranges. You can control the
generation of range checks by using special comments of the form:

(* $xc *)

where x is either Ror T,andcis +, —,or = The $ should be the first non-
blank character of a (non-nested) comment. The R switch controls subrange
testing on assignments, while the T switch controls array bounds and case value
testing. The + character turns a switch on, the - character turns it off, and the
= character restores its previous value. The default for both switches is ‘‘on’’ but
you can override it with the —norange and -nobounds switches to m2c.

The compiler does not check for overflow on 32-bit operations.

A of 20 October 1986

26 Using Modula-2 on the Sun Workstation

3.5. Implementation
Restrictions

Compiler options do not control pointer dereferencing, since system hardware
performs this task.

This implementation imposes the following restrictions on the Modula-2
language as defined in the Modula-2 Report:*

Function procedures
The result type of a function procedure must not be an array or a record.

Sets
Sets must consist of elements whose ordinal values are in the range 0 to 31,
inclusive. Set constructors are restricted to be constant elements. For exam-
ple, when Cisa CARDINAL variable, Modula-2 accepts

IF C IN { 1,5 .. 10 }
but not

IE-1 IN o Celh e 10)

Constant expressions containing real numbers or built-in functions
With the exception of sign inversion, the compiler does not evaluate con-
stant expressions containing real numbers or built-in functions. The com-
piler generates an error message when it expects a compile-time constant, for
example with constant declaration.

IOTRANSFER
The procedure TOTRANSFER doesn’t exist within the Sun Modula-2
implementation because it implies direct interaction with hardware protected
from access within the UNIX operating system.

CASE statement code size
In this implementation, CASE statements use a table of 16-bit jump dis-
placements, requiring that the total code size of the statements in the CASE
not exceed 32,768 bytes. In the rare event that you exceed this limit, convert
one or more of the constituent cases into a procedure.

TRUNC returns INTEGER — conversionto CARDINAL
The standard procedure TRUNC accepts eithera REAL ora LONGREAL
argument and returns type INTEGER, not type CARDINAL. This is
because REAL and LONGREAL are symmetrical about zero.

4 Niklaus Wirth, 3rd edition.

sSun A of 20 October 1986

microsystems

Chapter 3 — The Modula-2 Language on the Sun Workstation 27

3.6. Data Representation

When you want to convert into type CARDINAL, adjust the value of the
floating-point number into INTEGER range, then assign the result to a
CARDINAL. Forexample:

The Sun Modula-2 implementation closely models the implementation of C.
This allows Modula-2 and C routines to run together in the same program. The
Modula-2 compiler front end generates intermediate code, acceptable to the code
generator shared with the Sun C and Pascal compilers, so simple types have the
same representation in all of these languages.

The minimum addressable unit is one byte (eight bits). This is also the allocation
unit and the unit used for the sizes of variables (SIZE) and types (TSIZE).
Modula-2 always allocates elements that require more than one byte at even byte
addresses. Since Modula-2 allocates variables consecutively according to the
declaration sequence, byte-sized gaps may occur between variables or within
record types.

Here is a description of the allocated sizes and value ranges of the data types of
Modula-2:

BITSET
Defined as SET OF [0..31] (see ‘‘Set types’ below).

CHAR
Modula-2 stores variables of type CHAR in one byte. The value range
extends from OC (ordinal value 0) to 377C (ordinal value 255).

BOOLEAN
Modula-2 stores variables of type BOOLEAN in one byte. Their values
correspond to an enumeration type with the values FALSE (ordinal value 0)
and TRUE (ordinal value 1). '

Enumeration types
Modula-2 stores variables of enumeration types in one byte, if possible. If
the number of constants in an enumeration type exceeds 256, the type
requires two bytes. Modula-2 assigns the ordinal values of the enumeration
constants according to the declaration sequence, starting with value 0 for the .
first constant in the list.

CARDINAL and LONGCARD
Modula-2 stores variables of types CARDINAL and LONGCARD as
unsigned values in four bytes. The value range extends from 0 to

sSun A of 20 October 1986
microsystems

28 Using Modula-2 on the Sun Workstation

4,294,967,295.

INTEGER and LONGINT
Modula-2 stores variables of types INTEGER and LONGINT as signed
values in four bytes. The value range extends from - 2,147,483,648 to
2,147,483,647. Bit 31 is the sign bit.

Subrange types
Modula-2 stores variables of subrange types in the number of bytes (one,
two, or four) needed for the (signed or unsigned) representation of the values
in the range. For example, the subranges [0 .. 255] and [-128
127] fit into one byte, while the subrange [200 .. 300] requires two
bytes. The representation of subrange types declared with an explicit base
type (for example INTEGER[10 .. 20]) has the same number of
bytes as the base type. The standard type SHORTCARD is defined as the
subrange [0 .. 65535] oftype CARDINAL and the standard type
SHORTINT is defined as the subrange [-32768 .. 32767] of type
INTEGER. Each of these type requires two bytes.

REAL
Modula-2 stores variables of type REAL in four bytes in IEEE single-
precision floating-point format. Bit 31 is the sign bit. Bits 30..23 are an
eight-bit exponent biased by 127. Bits 22..0 are the fraction part of the
significand, with an implicit integer part of 1 for normalized numbers and 0
for subnormal numbers, whose exponent is minimal (exponent bits all are 0).
Values range in magnitude from the smallest subnormal number, about
1.5E-45, to the largest normalized number, about 3.4E38. Values with max-
imal exponent (exponent bits all are 1) represent infinity or NaN, Not-a-
Number. Infinity is the usual result of floating-point overflow; NaN the
usual result of an invalid operation such as 0.0/0.0.

A consequence of this representation is that Modula-2 can not represent
exactly FLOAT(x) for (most) cardinal values x > 16,777,216 (= 2%¥%*24).

LONGREAL
Modula-2 stores variables of type LONGREAL in eight bytes in IEEE
double-precision floating-point format. Bit 63 is the sign bit. Bits 62..52 are
an eleven-bit exponent biased by 1023. Bits 51..0 are the fraction part of the
significand, with an implicit integer part of 1 for normalized numbers and 0
for subnormal numbers, whose exponent is minimal (exponent bits all are 0).
Values range in magnitude from the smallest subnormal number, about
5.0E-324, to the largest normalized number, about 1.7E308. Values with
maximal exponent (exponent bits all are 1) represent infinity or NaN, Not-
a-Number. Infinity is the usual result of floating-point overflow; NaN the
usual result of an invalid operation such as 0.0/0.0.

Pointer types
Modula-2 stores variables of pointer types in four bytes. Pointers to objects
whose sizes are not one byte must always be even. The pointer constant
NIL has the ordinal value 0.

Ssun A of 20 October 1986

microsystems

Chapter 3 — The Modula-2 Language on the Sun Workstation 29

3.7. Parameter Passing

Set types
A set consists of elements with ordinal values in the range O to 31, inclusive.
According to the number of set elements, Modula-2 stores variables of set
types in either one, two or four bytes. Modula-2 represents the first value of
the set range by the rightmost bit of the value. The type BITSET is defined
as:

SET OF [0 .. 31]

The value of BITSET {0} is the binary value:
0000 0000 0000 0000 0000 0000 0000 0OO1

Array types
Arrays are sequences of elements of the same type. If the size of each array

element is one byte, Modula-2 allocates the elements in successive bytes. If
the element size is larger than one byte, Modula-2 allocates he elements at
even addresses. If the resulting size of the array is odd and not one byte,
Modula-2 enlarges the array by one byte to make the total size even.

Record types
Modula-2 stores records as contiguous blocks of bytes, with the fields allo-
cated in the sequence in which they are declared. If the size of a field ele-
ment is larger than one byte, Modula-2 allocates it at an even offset, so
unused bytes may occur within a record. If the resulting size of the record is
odd and not one byte, Modula-2 enlarges the array by one byte to make the
total size even.

Procedure types
Variables of procedure types are stored in four bytes. They contain the entry
addresses of the assigned procedures.

Opagque types
Variables of opaque types are stored in four bytes. They may be imple-
mented as pointer types, INTEGERs or CARDINALS.

Modula-2 passes parameters in inverse order on the stack. This is compatible
with the order used in other languages on Sun Workstations.

Variable parameters
Modula-2 passes the address of the supplied parameter, always passing vari-
able parameters in four bytes. For open arrays, Modula-2 passes the value
HIGH, in addition to the address, in another four bytes.

Value parameters
Modula-2 passes the value of the supplied parameter. For each parameter,
Modula-2 reserves at least four bytes on the stack with one- and two-byte
objects right-justified in a field of four bytes. Modula-2 passes objects
requiring more than four bytes in an even number of bytes. For open arrays,
Modula-2 passes the address of the array, and the called procedure copies the
value. In addition to the address, Modula-2 passes the value HIGH in
another four bytes. When you pass parameters to C routines, you must con-
sider that parameters of type REAL and array parameters are treated

sun A of 20 October 1986

microsystems.

30 Using Modula-2 on the Sun Workstation

|

differently by Modula-2 and C (see CCALL). ¢

3.8. Module Initialization The specifications of Modula-2 dictate that the initialization part, or body of
every imported module must execute before the body of the importing module.
‘When mutually-referent modules, or chains of modules exist, the order of initiali-
zation, according to the Modula-2 Report® is undefined. Avoid writing programs
that depend on this initialization order when circular references among a set of
modules is possible.

5 Niklaus Wirth, Programming in Modula-2, 3rd edition, page 169. ‘

@ sun A of 20 October 1986
microsystems

